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The Stokes equations describing the creeping motion of two arbitrary-sized' 
touching spheres are solved exactly through the use of tangent-sphere CO- 

ordinates. For the case of a linear shear field at  infinity, explicit results covering 
the entire range of size ratios are presented for: (a )  the forces and torques on the 
aggregate; ( b )  the hydrodynamic forces on the individual spheres comprising 
a freely suspended aggregate, which are in general non-zero; (c) the contribution 
of the pair to the bulk stress of a dilute suspension; and (d) under free sus- 
pension conditions, the velocity of any material point relative to that of the  
undisturbed flow. 

1. Introduction 
Following Einstein's derivation of his classical expression for the effective 

viscosity of an infinitely dilute suspension of rigid spheres, considerable effort 
has been directed towards determining theoretically the rheological properties 
of two-phase systems consisting of small particles freely suspended in a con- 
tinuum fluid. Specifically, numerous authors have dealt with the problem 
originally considered by Einstein and have attempted to extend the analysis to 
the non-dilute case. In  fact, the most common approach along these lines has 
been to try and determine the coefficient of the O(c2) term in the Einstein equation 

p*/p = 1 +%c+O(cZ), (1.1) 

where p* is the effective viscosity of the suspension, p the viscosity of the pure 
fluid and c the volume fraction of the solid spheres, because, according to ex- 
perimental evidence, knowledge of this coefficiect, whose numerical value is 
believed to be of O(lO), would extend the applicability of (1.1) to values of G 

as large as 0.2. Otherwise, (1.1) remains of limited usefulness since it is known to 
become inaccurate when c exceeds approximately 0.03. 

Although it has been established for some time that the O(c2) term in (1.1) 
reflects the contribution of all first-order particle interactions to the rate of 
energy dissipation in the suspension, a rigorous theory for computing its co- 
efficient was not developed until recently (Batchelor & Green 19723). An im- 
portant aspect of this theory, which has already yielded explicit results for the 
case of equal-sized spheres (Batchelor & Green 1972b), is that it can be applied 
to suspensions containing spheres of different sizes and thereby yield the first 
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theoretical expression for the effective viscosity of such systems beyond the 
range of infinite dilution, provided that, inter alia, detailed information regarding 
the motion of a pair of spheres freely suspended in a linear shear field under 
creeping-flow conditions is already available. Thus, problems involving such 
motions of two interacting spheres are worth studying, not only because of their 
fundamental nature, but also because, in view of Batchelor & Green’s recent 
theory, they constitute one of the key intermediate steps for the derivation of 
a significant result in the field of suspension rheology, namely the extension 

Such types of two-sphere problems are of course not new in that they have 
attracted the attention of numerous investigators for over half a century. Many of 
these contributions were recently reviewed by Lin, Lee & Sather (1970), who, 
through the use of bispherical co-ordinates, introduced by Jeffery (1922), also 
obtained an exact solution to the Stokes equations for the motion of two unequal- 
sized spheres arbitrarily oriented with respect to a shear field. This solution, given 
in detail for spheres of equal size, is of particular value to the study of suspension 
rheology in that, by applying the condition of zero net force and torque to each 
of the two spheres, it can yield in principle their translational and rotational 
velocities and thereby their trajectories of free motion throughout the flow field. 

In  a recent study, Batchelor & Green (1972a) made use of this solution by 
Lin et al. (1970) to compute the relative trajectories of two equal-sized spheres 
freely suspended in a simple shear flow and found, in agreement with earlier 
experimental observations by Darabaner & Mason (1967), that, depending on 
their initial location, the two spheres either pass by one another or orbit about 
each other indefinitely. Batchelor & Green also showed that the shapes of these 
open and closed trajectories resemble the streamline pattern around a single 
sphere freely suspended in a simple shear field (Cox, Zia & Mason 1968), and that 
the kinematics of a pair of spheres, in either orbit, are governed instantaneously 
by Jeffery’s (1922)  equations of motion for a spheroid having an axis ratio re 
whose value, however, is constantly changing with the position of the spheres. 

The solution given by Lin et al. (1970), though applicable in principle for 
distances between the centres of the spheres of arbitrary magnitude, requires 
the evaluation of a complicated infinite series involving bispherical harmonics, 
the convergence of which becomes slower as the minimum clearance between the 
spheresisreduced. In  fact, thesolution ceases to apply in the limit of zero clearance 
since the bispherical co-ordinate system is inherently unable to describe finite- 
sized spheres in contact. Consequently, although it should be possible to describe 
qualitatively the motion of touching spheres and to calculate integral quantities 
(such as forces and torques) by asymptotic considerations, it would be of interest 
to obtain the exact solution for touching spheres since, as shown recently by 
Batchelor & Green (1972a), such a solution can be used to provide information 
about some of the functions describing a two-sphere encounter in shear flow when 
the spheres are close together. Moreover, the exact determination of the flow 
field around arbitrary-sized touching spheres would be important for evaluating 
the contribution of such doublets, as well as of certain non-touching pairs in 
close proximity, to the stress-strain relation that applies for suspensions of solid 

of (1.1) to O ( C 2 ) .  
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spheres, and, as mentioned earlier, should prove useful in calculating the co- 
efficient of the O(c2) term in (1.1) for suspensions containing spheres of mixed 
sizes. Besides, the present analysis apparently produces the first creeping-flow 
solution involving a body of revolution without fore-and-aft symmetry, and as 
such should prove to be of some special interest. 

It is the purpose then of this paper to develop a solution for the quasi-steady 
creeping motion of two arbitrary-sized touching spheres suspended in a linear 
shear field. This will be achieved through the use of tangent-sphere co-ordinates, 
recently employed by O’Neill (1969) to obtain an exact solution for the special 
case of two equal-sized spheres in contact settling with equal velocities per- 
pendicular to their lines of centres, and will include as a particular case the 
solution given recently by Wakiya (1971) for equal-sized spheres in a simple 
shear flow. The present solution will then be used to evaluate the particle stress 
caused by the presence of the aggregate and thereby the contribution of the 
latter to the rate of energy dissipation in a dilute suspension. It is also worth 
remarking that, on the basis of this solution, the net hydrodynamic force and 
torque on each sphere are both predicted to be, generally, non-zero, and therefore 
must be balanced by the force exerted by one sphere on the other at their point 
of contact. 

Finally, it will be seen that, although the resulting equation for the angular 
velocity of solid-body rotation is similar to that of an equivalent spheroid with 
a constant axis ratio which is a function only of the size ratio of the spheres, the 
solution also leads to a finite drift velocity for the aggregate that depends on the 
size ratio of the spheres and their orientation in the flow field. 

We proceed now to describe the formal solution of the Stokes equations for 
two spheres in contact. 

2. The equations of motion 
Under the assumptions of incompressible creeping flow and the existence of 

a quasi-steady solution, the disturbance caused by the presence of a touching- 
spheres aggregate satisfies the Stokes equations 

where ui and p are, respectively, the velocity and the pressure relative to the 
corresponding variables uoi and po  of the undisturbed stream, and p is the fluid 
viscosity. The appropriate boundary conditions are that 

ui,p -+ 0 as ( X ~ X , ~ ) ~  --f m (2.3) 

together with the no-slip requirement on the surface of the spheres. The latter 
results in a rather simple expression, because, as would be expected on the basis 
of O’Neill & Majumdar’s (1970) analysis regarding the motion of two spheres 
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separated by a small gap, and as has already been established experimentally by 
Mason and co-workers, no relative rotation or translation between the touching 
spheres occurs under creeping-flow conditions. Consequently, the pair will be in 
rigid-body rotation with angular velocity Qs and the remaining boundary con- 
dition reduces to 

(2.4) 

where V, is the velocity of the point of contact and pi is a unit vector pointing 
along the direction of the line of centres from the smaller sphere towards the 
larger. 

Asolutionto (2.l)and (2.2)subjectto (2.3)and (2.4)cannow begivengenerdly 
for any set of curvilinear co-ordinates conjugate to the cylindrical system. 
Specifically, it can be shown from the work of Lin et al. (1070) that a formal 
solution to (%I), with p satisfying Laplace's equation, is 

u, = U, + eiik Qixk - uM on the surface, 

m .-. 
p = p z {nm sin m$ + n-, cos m$}, 

m=0 J 
where u,., u; and u, are the three cylindrical velocity components, and n,, u,, 
wm and w,,, are auxiliary harmonic functions of the other (than 6) two curvilinear 
,co-ordinates. 

The application of the general form of the solution to the case of touching 
spheres is facilitated through the use of the tangent-sphere co-ordinate system 
given by 

and illustrated in figure 1. Here, the appropriate harmonic functions are 

x+ir = i(q+it)-l  (2.6) 

together with similar expressions for nm, v, and urn, in which the set (Arn, B,, &,) 

.(2.7), the qrn,(q) are Bessel functions of the iirSt kind and order Iml, and A,&)- 
H,(v) are continuous functions of the parameter v. For further discussion it is 
understood that the integer m assumes absolute values except as a subscript 
to the auxiliary functions A-H. The latter are to be determined by requiring 
that (2.5)-(2.7) satisfy (2.2) plus the boundary conditions (2.3) and (2.4). 

is r e p l a d  by, respectively, (em, D,, (Ern, and (Gmy K,, Jiml+l). In 

Substitution of (2.5) into (2.2) leads next to 

(3 + r & + z i )  a 7cm+ (i +%) urn+ (z- a 7) m-1 8,+ 2- a w, = 0, (2.8) 
az 
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FIGURE 1. The various co-ordinate systems used. The radii of the 
spheres are a, = (2&&4 respectively. 

which, in view of (2.7) and the recurrence relations among the Bessel functions 
J,(vy), reduces to the two sets of differential equations involving the various 
auxiliary coefficients 

m(m - 1) Em 
V 

where d = d/dv. Similarly, it is possible to show that, on account of (2.4), the 
functions C,(v)-H,(v) may be expressed solely in terms of Am(v)  and B,(u) plus 
some known integrals arising from U, and Qi and the undisturbed velocity u, 
evaluated at the surface. (Explicit expressions for arbitrary-sized spheres and 
a linear undisturbed flow field have been deposited with the editors of this 
journal and are available from them upon request.) As a result, in lieu of (2.9), 
two linear coupled inhomogeneous ordinary differential equations in A ,  and 
B, are obtained of the form 

.Ep,{Am, B m }  = &rn(v)) Am{&, Bm} = grn(v), (2.10) 

where 9, and dn, are linear operators, while d, and 9Ym are known functions 
arising from the known integrals appearing in the expressions which relate 
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C,-H, to A ,  and B,. It should be noted that, for equal-sized spheres, the linking 
terms containing B, in grn and A, in A, vanish, hence, in this case, the two 
sets become uncoupled. 

The relations between the various coefficients that result from using (2.4) also 
lead to the conditions 

d2A,(v) = O(v-,), d2B,(v) = O(v-,-l) as v + 0, (2.11) 

which are more restrictive than those arising from (2.7). The above, plus the 
requirement that A,(v) and B,(v) decay exponentially for large v, which follows 
naturally from (2.3) and (2.7), then become the boundary conditions for the 
numerical solution of (2.10). 

We proceed next to evaluate the solution to the creeping-flow equations for 
the particular case of a freely suspended aggregate. 

3. The freely suspended aggregate 
The free suspension conditions manifest themselves through the requirement 

that the instantaneous net force and torque on the aggregate be zero. To calculate 
these quantities use is made of the expression for the stress force as given by 
Lamb (1945, p. 596): - ’ a [ ( x j T a N p j ) u j ]  ( N  = I,II), (3.1) 

a 
o-..n. = - p n i + p  ui+-- 3 a:) a,ax, 

where RN refers to the radial co-ordinate originating a t  the centre of the sphere 
whose radius is a,. The total hydrodynamic foroe on each sphere is then 

P 

3’: = a,jn,dA, (AN = surface of Nth sphere), J 4  
the Cartesian components of which for arbitrary-sized spheres, are, relative to 
the co-ordinate system of figure I ,  

(3.3) 

% = - 47rp/om [A,(v) t- B,(v)] dv. J 
Similarly, the components of the torque on each sphere about the point of contact, 

(3.4) 

t (3.5) 
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In  (3.1)-(3.5) the upper sign refers to sphere I and the lower to sphere 11. (Explicit 
results for the forces and torques appearing in (3.3) and (3.5) are given in the 
appendix. ) 

Because of its relevance to rheological studies, a linear shear flow will be 
chosen next for the undisturbed flow field, with its origin set at  the point of 
contact. Thus, with 2wi and eij, respectively, the local vorticity and rate-of-strain 
tensor of the undisturbed flow, 

uO.i = (eik + c i j k  W j )  x k ,  (3.6) 

in which case A,(v) and B,(v) plus all the auxiliary functions C,(v)-H,(v) can 
be shown to vanish identically for m > 2. Also, the requirement that the com- 
ponents of the total force and torque acting on the aggregate vanish, plus the 
fact that the orientation of the aggregate is specified uniquely by the unit vector 
pi,  leads to a pair of simple expressions relating Qi- ui, the angular velocity of 
solid-body rotation of the aggregate relative to that of the free stream, and &, 
the velocity of the point of contact, to eij, the rate-of-strain tensor of the un- 
disturbed flow. 

We note first that, since the axial vector Qi - oi is linear in eij and is a function 
also of pi, we have, following Bretherton (1962), that 

Q i- w . = -  z ~ b ( h ) c ' i j k ( e k m l ) m P j - e j m P m ~ k ) ,  (3.7) 

where b(h)  is a scalar function of h ( = aI /aI I ) ,  the size ratio of the spheres. Clearly, 
for the particular orientation of the co-ordinate system shown in figure 1, 
pi = 6, and, therefore, 

where, for purposes of rendering (3.8) identical to Jeffery's (1922) well-known 
expression for the angular velocity of solid-body rotation of a spheroid, we have 
formally replaced b(h) by (rE- l)/(rz+ l), with re being referred to as the axis 
ratio of the equivalent spheroid. Similarly, 

(3.9) 

where again y1 and yz are functions only of A. It can also be shown, from (2.4), 
(3.7) and (3.9) that the velocity of a material point CR located along the axis at 
a distance a, from the point of contact and with 

ui = aA.yl(h) eijpj + ~ z ( h )  e j k ~ j ~ k ~ i ) ,  

a4 = %/(I-  b )  (3.10) 

consists of two terms: the undisturbed flow velocity at CR 

aIC(eijPj + Eijk W j P J i  
plus a 'drift ' velocity 

aIPejkPjPkPi ( P V )  = 71 + Yz), (3.11) 

the latter being along the axis. It then follows that if the origin of the undisturbed 
shear field were placed at C,, henceforth referred to as the centre of free rotation, 
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r e  5 B hl h2 P1 P 2  P 3  

(3.8) (3.10) (3.11) (3.16) (3.16) (4.3) (4.3) (4.3) 

1.00 1.982 
1-01 1.981 
1-20 1.940 
1.50 1.798 
2-00 1.559 
3-00 1.279 
5.00 1.094 
10.0 1.017 

03 1.000 

0 
0.0118 
0.2000 
0.4088 
0-6259 
0.8258 
0.9424 
0.9893 
1.000 

0 
0.0059 
0.0950 
0.1610 
0.1694 
0.1 145 
0.0479 
0.0103 
0 

4.463 7.767 
4.449 7.520 
3.844 5.629 
3.356 3.383 
2.879 2.253 
2.116 - 0.2359 
1.190 -0'5901 
0.3853 - 0.2820 
0 0 

5.255 
5.265 
4.943 
3.833 
2.045 
0,4174 

- 0.1054 
- 0.0433 

0 

4.764 
4.764 
4.773 
4.805 
4.861 
4.929 
4.976 
4.996 
5.000 

0.9638 
0.9580 
0,9855 
1.053 
1,047 
0.7673 
0.3539 
0.0728 
0 

TABLE I.  A summary of the coefficients appearing throughout the paper as a function of 
the size ratio of the spheres. The numbers in parentheses refer to the equations in which 
the constants are defined. 

the velocity of any material point would equal the drift velocity given by (3.1 1) 
plus a velocity of solid-body rotation 

%ik Qi(% - <w?d) 
where xk - <alpk is the position vector originating at  C,. 

The three scalars re, < and /3, all of which depend only on the size ratio A ,  
can now be determined from the requirement of zero torque and force on the 
aggregate : 

F: + F:' = 0, Ti +Ti1 = 0. (3.12) 

Because of (3.3)) (3.5) and (3.8), however, and the fact that, in the co-ordinate 
system of figure 1, U, = a, c( 1 - b )  el, and U, = a, <( I - b )  eZ3, it is only necessary, 
for purposes of obtaining re and 6, t o  consider (3.12) with i = I, j = 2 (or i = 2, 
j = 1)) which is equivalent to requiring that 

joa EJv)  dv  = vFm(v) dv = 0 (rn = & 1). s," 
It is then easy to see that the remaining relations in (3.12) are automatically 
satisfied, except for the condition F i  + F p  = 0, and the functions r,(h) and <(A) 
thus computed are given numerically in table 1. 

Unfortunately, the present method of solving (2.1) and (2.2) applies only when 
U, = 0 since otherwise improper integrals are encountered in the expressions 
for C, and Do which diverge as 7 --f co. Thus, in order to satisfy the requirement 
that the component of the net force along the axial direction pi should also 
vanish, and thereby determine /3(A), it  is necessary to superimpose on to the 
present solution (with U, = 0)  the one given recently by Goren (1970) for the 
axisymmetric translation of two touching spheres in a quiescent fluid. The 
resulting numerical values for /3(h) are generally found to be non-zero (see table l), 
a fact which merely reflects the lack of fore-and-aft symmetry in the geometry 
of the aggregate when the spheres are of unequal size. It is important that the 
presence of this non-zero drift should not be overlooked, since it is clear that the 
free motion of the aggregate in a shear flow is not uniquely described by ' Jeffery's 
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orbit equations' (3.7). Rather, the trajectories marked by the tip of pi must be 
determined from (3.7) in conjunction with (3.6) and (3.9). 

This can be illustrated, for example, by considering the special case in which 
the undisturbed flow is a simple shear of the form uh = yxj, where ui and xi are, 
respectively, the velocity and position vectors relative to a fixed co-ordinate 
system and y is the strength of the shear. Then, since 

p1 = cos 8, p 2  = sin q5 sin 0, p ,  = cos q5 sin 8, 

where q5 and 8 are the familiar Euler angles, we have from (3.9) that 

(3.13) 

dy,/dt = p( A) y sin $ cos q5 sin2 8 cos 8, 
dy,/dt = y{ y3 + p( A )  sin2 q5 COB q5 sin3 S}, 
dy,/dt = p( A) y sin q5 cos2 q5 sin3 8, 

where a,yi denotes the position of the centre of free rotation, together with 
Jeffery's (1922) expressions 

tan q5 = re tan ___ Yt tan8 = Cre (3.14) 

in which C is the so-called 'orbital constant '. This simple system has a general 
solution of the form 

re+(I/re)' (r," cos2 q5 + sin2 q5)4 ' 

y1 = kl-/3(A)*cOs8, 
rE- 1 

y2 = k2 + k3- tan-l -tan q5 r f+  re ('e 1 
- (rz - I)& sin q5 sin 8 - tanh-l [r;l(r," - 1)h sin q5 sin 81 

cos$sin8-- 
(rz - I)* 

1 

where the k's are constants of integration. Since, obviously, both k, and k2 may 
be set arbitrarily without affecting the shape of the trajectories yi(t), it is evident 
that the latter will depend only on C and on E ,  which equals y3(0) if q5 is set 
initially equal to in-. It is also clear that the aggregate will experience a net 
translation in the positive-x; direction when y3(0) > 0, and vice versa, and that 
it will move in closed orbits when y3(0) = 0. Examples for the case of the two- 
dimensional motion of pi in the xh, xh plane (C = co, 8 = 37r) are illustrated in 
figures 2 and 3.t $horn in figure 2 are the trajectories of the centre of free rotation 
of an aggregate with size ratio A = 2 for various initial conditions, while figure 3 
depicts typical closed orbits of the centre of free rotation for aggregates with low 
and high size ratios. The trajectories of any other material point may also be 
inferred from these graphs using, as additional information, the instantaneous 

t A direct numerical integration of (3.13) was found to be faster than the evaluation 
of (3.15). 
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0.2 

0.1 

w 
t I 

0 1 .0 1.5 
Y2 

FIGURE 2. Periodic trajectories of the centre of free rotation in simple shear flow for h = 2, 
where h is the size ratio of the spheres. The arrows indicate the orientation of the unit 
vector p+ at the corresponding points, and the co-ordinates are defined in (3.13). y,(+n) 
refers to the value of y3 at Q = +T. 

orientation of the aggregate indicated by the direction of the arrows. Clearly, 
the initial orientation of the aggregate plays an important role in determining the 
trajectories of its centre of free rotation, which, apart from their striking and per- 
haps unexpected shapes, would be of interest in future studies dealing with prob- 
lems that involve the interaction between pairs of such two-sphere aggregates. 

It is finally of interest to evaluate Pf (N  = I or 11)) the net hydrodynamic 
force acting on one of the two spheres when the aggregate itself is freely sus- 
pended. This force, being linear in eij and odd in pi, must be of the form 

FF = r f :  7v&(h,(A) e i k p k  + ejkPjPkPih (3.16) 
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0.04 

0.03 

0.02 
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Y3 0 

- 0.0 1 
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- 0.04 

-0.05 

0 0.01 0.02 0.04 0.06 0-08 

Y2 

FIGURE 3. Closed orbits of the centre of rotation in simple shear flow 
for h = 1.2 and h = 5. A,  y3 and y2 are as in figure 2. 

where the plus sign has been chosen to refer to the larger of the two spheres 
( N  = I), of radius a,, and in which the scalars h, and h,, given in table 1, have been 
determined from (3.3). 

4. Particle stress in dilute suspensions 
One of the most important consequences of the present exact solution for the 

creeping motion of a touching pair of unequal-sized spheres is that it leads to 
an expreasion for the contribution of the aggregate to the particle stress in dilute 
suspensions. Of course, a complete analysis of this subject should also consider 
those effects which determine the steady-state distribution of orbital orientations, 
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such as inertia forces (Harper & Chang 1968) or Brownian diffusion (Leal & 
Hinch 1971); however, these complications will not be included at  this time. 

It has been shown by Batchelor (1970) that, in the absence of inertia effects, 
the contribution of the particles in a suspension to the bulk stress of the equivalent 
continuum is given by 

j gi jdv’  (4 .1 )  
1 q) c g p  = - 2 v v. 

denoting summation. The integration is over the volume of each particle 
and the summation is over all the particles within the representative averaging 
volume V ,  which must be large enough to contain a statistically significant 
number of particles yet small enough for the variation of the statistical properties 
over V to be negligible. Using the divergence theorem and in the absence of net 
forces or torques on the particles, 0.3) can also be expressed as 

I L  

(4 .2 )  

where A ,  refers to the surface of each particle within V. For a dilute suspension, 
interaction among particles can be neglected, hence the contribution of a single 
aggregate to the particle stress can be obtained from (4 .2 )  using the solution 
derived earlier. 

Evidently, since g$’) is a function only of eij  and o f p i ,  the unit vector specifying 
the orientation of the aggregate, it must satisfy Ericksen’s (1959) constitutive 
relation for the stress of an anisotropic fluid whose anisotropy depends solely on 
a single ‘director’ pi. Thus, for the special case of a stress which is linear in eij 
and isotropic when the latter is zero, we have that 

4n;ua; 
4 7 )  = Po’ij +- 3 v  (1 + V1ekwiPkPmPiPj +P2ei j  + P 3 ( e i k ~ k ~ j  +ejkpkpi)) (4 .3 )  

and dpi/dt = ei jkQjpk,  with Qi given by (3.7), 

where pl, p2 and p3 are functions only of A. Furthermore, by applying our solution 
to (4.2)’ we obtain for the.components of C T ~ )  in the co-ordinate system of figure 1, 
in which pi  = ai3, 

from which the p’s shown in table 1 were determined. 
Finally, as mentioned in the introduction, the present solution can also be 

used, in conjunction with some additional results pertaining to the statistical 
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distribution and relative motion of a pair of spheres in a given flow field, for the 
purpose of deriving the O(c2) term in the constitutive equation for a non-dilute 
suspension of unequal-sized solid spheres. This extremely interesting and worth- 
while analysis remains, however, to be carried out. 

This work was supported in part by a grant from the National Science 
Foundation. 

Appendix 
Although this paper is focused on the motion of a freely suspended aggregate, 

the present solution applies of course to particles which are not necessarily force 
free and couple free. Consider then the nine material tensors relating eij, Qi - wi 
and K - - w i 0  (the latter being the translational velocity of a material point P 
in the body relative to that of the undisturbed stream evaluated at P) to the 
total force 4, the torque Li and the stresslet Sii (given, respectively, by (3.2), 
(3.4) and the integral in (4.2)), where L, and Sij are now expressed in terms of 
a position vector originating at P. The linearity of the creeping-flow equation 
requires that 

-4, DL Qlki v k 0 - G  

@ = (a Zk :)(y:), (A 1) 

where, clearly, the values of - wdo, Li and Sij depend, in general, on the choice 
of P. Although, of course, the latter is arbitrary, the expressions for the nine 
tensors in (A 1) and, in particular, those for Q', Q", R' and R", simplify somewhat 
if P is chosen to coincide with the centre of free rotation C, as defined following 
(3.10). With P then being at C, and, in view of the axisymmetric shape of the 
aggregate, the fact that M, - w, must satisfy (3.7) under free suspension condi- 
tions, and the symmetries in the above grand matrix (discussed recently by 
Hinch 1972), it  is easy to show that the various tensors in (A 1) depend only 
on ten constants and are of the form 

where 

These coefficients are given in table 2 as functions of the size ratio A. The corre- 
sponding coefficients in the expressions for the torques and forces on the in- 
dividual sphere were also calculated and have been deposited with the editors 
of this journal, from whom they can be obtained upon request. 
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